
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Extending	
 van	
 Leer’s	
 Algorithm	
 to	

Mul7ple	
 Dimensions	

S.	
 J.	
 Mosso1,	
 T.E.	
 Voth2,	
 and	
 R.R.	
 Drake3	

Sandia	
 Na7onal	
 Laboratories	

SAND	
 2013-­‐7261C	

	

2	

1 sjmosso@sandia.gov
2 tevoth@sandia.gov
3 rrdrake@sandia.gov

Introduction:
• Overview of X-FEM algorithms for interface

reconstruction and remapping
• Development of the van Leer interpolation for remap
• Demonstrate with a verification problem
• Conclusion and future directions

3

X-FEM Overview:
• X-FEM is part of Alegra

•  Selected through input deck
•  Voth’s clever implementation allows hydro/strength

algorithms to be shared

4

Non-XFEM element
and
X-FEM parent element

X-FEM child elements

Important extra node:
 - divides face for ‘neighbor material’ correspondence
 - allows more accurate contact behavior
 - can produce non-convex material perimeter

X-­‐F	

5	

Remapping algorithm:
•  2D Design choices: swept face or intersection remap
•  Swept face

•  Originally unclear how to implement
•  Due to two directional sweeps (2D), increased dissipation
•  Possible lower fidelity due to approximations

•  Intersection remap:
•  Based upon Dukowicz1 and Ramshaw2 (without node coordinate

randomization)
•  Much more complex algorithm
•  Each material is remapped individually
•  Able to remap non-convex material

polygons
•  More expensive than swept remap

Remapping two material donor
element onto its neighbors

[1] J.K. Dukowicz, Conservative Rezoning (remapping) for general quadrilateral
meshes, J. Comput. Phys., 54 (1984), pp. 411 – 412,
[2] J.D. Ramshaw, Conservative Rezoning Algorithm for generalized Two-Dimensional
Meshes, J. Comput. Phys, 59 (1985), pp. 193-199.

6	

Interface Reconstruction:

•  Patterned Interface Reconstruction (PIR)
•  Based upon Youngs’ algorithm
•  PIR works in physical space (as opposed to unit-cube)
•  Provides a conservative material description
•  Keeps ‘neighboring material’ connections for the contact
•  Manual priorities with enhanced material placement (materials

aren’t required to use onion-skin).
•  Automatic priorities (see R. Kramer’s talk)
•  Polygonal element and material description

guarantees non-crossing interfaces
•  Interface smoothing is rarely used
•  Adds interface segments (2D) or polygons (3D) to

give C0 continuous interface description for contact
and DSD

Whipple Shield
calculation with Alegra
X-FEM illustrating
multiple occurrences of
void material in fixed
priority order
reconstruction

Reconstructed
interfaces of 3D bar
showing addition of C0
polygons (skinning)

Mul7ple	
 Dimensional	
 MUSCL	
 algorithm	

7	

•  Many similar efforts at extending MUSCL have occurred
•  MUSCL1 concepts:

•  Uses a Taylor Series expansion to represent the distribution of
conserved scalar quantities over a donor element

•  Commonly uses only 2nd order terms or 3rd order Taylor series (all
terms above)

•  The distribution function is integrated over the intersection
elements

[1] B. van Leer, Towards the Ultimate Conservative Difference Scheme, V. A second-order sequel to Godunov’s Method,
J. Comput. Phys., 32 (1979), pp. 101-136.

F

ext

=F

home

+ (x� x

c

)
@F

@x

+ (y � y

c

)
@F

@y

+
1

2
(x� x

c

)2
@

2
F

@x

2
+

(x� x

c

)(y � y

c

)
@

2
F

@x@y

+
1

2
(y � y

c

)2
@

2
F

@y

2

8	

Achieving	
 monotonicity	

•  Monotonicity (create no new maxima or minima in
the distribution):

 If :
 else :

 this says that the extrapolated function is
 bounded by the home and neighbor values of F

•  When multiple dimensional Taylor series is used,
usually the number of neighbors overdetermines
the values of the derivatives

Fhome
F1

F0

F2

F3

F4
F5

F7

•  Use an ‘optimization’ algorithm to achieve a solution.
•  Implement the monontonicity conditions as constraints
•  The objective function will be how well does the extrapolated value

approximate all the neighbors
•  We will use a linear programming algorithm to solve the problem in each

donor element (lp_solve 5.5 for now)
•  Linear programming evenly weights the neighbors (whereas least-

squares more heavily weights the ill-fitted neighbors)

F
home

� F
n

F
home

� F
ext

� F
n

F
home

< F
n

F
home

< F
ext

< F
n

9	

Algebra	
 of	
 monotonicity	

•  How are the constraints implemented?
 for example: :
•  First constraint for neighbor

•  Second constraint for neighbor

F
home

� F
n

F

home

� F

ext

F

home

� F

home

+�x

@F

@x

+�y

@F

@y

+
1

2
�x

2 @
2
F

@x

2
+�x�y

@

2
F

@x@y

+
1

2
�y

2 @
2
F

@y

2

0 � �x

@F

@x

+�y

@F

@y

+
1

2
�x

2 @
2
F

@x

2
+�x�y

@

2
F

@x@y

+
1

2
�y

2 @
2
F

@y

2

F

n

 F

ext

F

n

 F

home

+�x

@F

@x

+�y

@F

@y

+
1

2
�x

2 @
2
F

@x

2
+�x�y

@

2
F

@x@y

+
1

2
�y

2 @
2
F

@y

2

F

n

� F

home

 �x

@F

@x

+�y

@F

@y

+
1

2
�x

2 @
2
F

@x

2
+�x�y

@

2
F

@x@y

+
1

2
�y

2 @
2
F

@y

2

F
home

� F
ext

� F
n

10	

Unoccupied	
 Neighbors?	

Fhome
F1

F0

F2

F3

F4
F5

F7

•  Require four occupied neighbors for 3rd order
algorithm and three occupied neighbors for 2nd
order

•  If this number of neighbors isn’t present, lower
algorithm in home element by one order

•  If there are enough neighbors, two options (user
input):

?

•  Allow extrapolated derivatives: omit constraints for this neighbor and
allow the other neighbors to determine the distribution

•  The algorithm can create a new maximum or minimum but it is
usually ‘reasonable’

•  Deny extrapolated derivatives in direction of missing neighbors:
•  Implemented by using value of Fhome for missing Fn
•  In plots it appears as a ‘ledge’ around the material boundary

11	

Displacements	
 used	
 in	
 constraints	

Fhome
F1

F0

F2

F3

F4
F5

F7

𝛻F F

•  Constraints can be ‘excessively limiting’
•  An example is when two ‘opposite’

neighbors have very small differences with
Fhome and the dot product of the
displacements aren’t near 1:

Ngbr1 constraints Ngbr3 constraints combined constraints

F

home

� F

ext

� F1

F1 = F

home

� ✏

~

X1 � ~

X

home

= (�x)̂i+ (�y � �)ĵ

F3 � F

ext

� F

home

F3 = F

home

+ ✏

~

X3 � ~

X

home

= �(�x)̂i+ (�y � �)ĵ

12	

Displacements	
 used	
 in	
 constraints	

Fhome
F1

F0

F2

F3

F4
F5

F7

𝛻F F

•  Excessive limiting is caused by opposite
constraints ‘folding into’ the gradient and
hessian.

•  To minimize this tendency: use displacement
vector from home centroid to mid-edge
coordinate or nodal coordinate. (remember
these coordinates are evaluated after the
Lagrangian step. Element is probably in a
deformed configuration.)

•  To minimize excessive limiting we ‘diagonalize’
the displacements of opposite neighbors (define
opposite displacements by vector between
neighbors)

d̂ =
~X1 � ~X3

| ~X1 � ~X3|
~d1 = | ~X1 � ~Xc|d̂
~d3 = �| ~X3 � ~Xc|d̂

13	

Displacements	
 used	
 in	
 constraints	

•  Observation: constraints tend to be overly restrictive in many situations.
Distributions will revert to 1st order when a monotonic 2nd or 3rd order
distribution is visibly feasible

•  Observation: gradient values tend to be lower than observed average
gradient and Hessian values tend to be larger

14	

Addi7onal	
 3rd	
 order	
 constraint	

•  Require that the gradient at the center of home element dotted with the
gradient at each neighbor is >= 0

•  This ensures that a maxima or minima doesn’t occur between home
centroid and neighbor

•  Constraint:

•  Where:

•  To preserve the linearity of the constraint we evaluate an average gradient

and use it:
 Fx Fx + Fy Fy + dx Fx Fxx + (dx Fy + dy Fx) Fxy + dy Fy Fyy >= 0

Grad(Fn)*Grad(Fhome) >= 0

Grad(Fn) = (Fx + dx Fxx + dy Fxy) i + (Fy + dy Fyy + dx Fxy) j

15	

Calcula7ng	
 an	
 average	
 gradient	
 	

•  Use Dukowicz and Kodis’ surface integral
algorithm

•  Accurate for distorted meshes
•  Start with gradient around each home node
•  Each line segment extends from element

centroid to an edge midpoint
•  Grad(F) = Sum(F*segment area) / volume

inside polygon

home

•  Avg Grad(F) = Sum(nodal Grad(F) *nodal volume) / Sum(nodal volume)

→
𝐴
┬

16	

Calcula7ng	
 an	
 average	
 hessian	
 	

•  Use Dukowicz and Kodis’ surface integral
algorithm again

•  Compute the gradient of each component of
the nodal gradients

•  Fxx = grad(Fx) * i
•  Fyy = grad(Fy) * j
•  Fxy = grad(Fx) * i + grad(Fy) * j

home
A

Fx,Fy

17	

Final	
 monotonicity	
 constraint	
 	

•  Magnitudes of gradient and hessian can be too large
•  FxFx + FyFy<= FxFx + FxFx
•  FxxFxx + FxyFxy + FyyFyy <= FxxFxx + FxyFxy + FyyFyy
Where bold italics derivatives are the components of the average gradient
and hessian

18	

Objec7ve	
 func7on	
 	

•  A linear function which measures how close the extrapolated value is to
each neighbor value

•  Each occupied neighbor contributes to the objective function:
If Fhome >= Fn
Obj += Fext – Fn
 += Fhome + dx Fx + dy Fy + dxdx Fxx + dxdy Fxy + dydy Fy – Fn
 += dx Fx + dy Fy + dxdx Fxx + dxdy Fxy + dydy Fyy + Fhome – Fn

•  Due to monotonicity constraints, Fhome >= Fext >= Fn, this can’t go negative
If Fhome < Fn
Obj += Fn – Fext
 += Fn - Fhome - dx Fx - dy Fy - dxdx Fxx - dxdy Fxy - dydy Fy
 -= dx Fx + dy Fy + dxdx Fxx + dxdy Fxy + dydy Fyy + Fhome – Fn

•  Constants are dropped
•  Each neighbor’s objective contribution is weighted by abs(Fhome – Fn)
•  Minimize the objective
•  Alternate objective functions

Lin	

19	

Linear	
 programming	
 formula7on	
 	

•  The constraints and the objective function must be linear in the unknowns
•  The null solution (Fx=Fy=Fxx=Fxy=Fyy=0) must be a valid solution
•  Allow negative solutions (ie Fx < 0) by describing each unknown by two

variables: Fx = Fx
+ – Fx

-

•  Only one of the two variables will be non-zero.
•  For a 3rd order 2D element with 8 occupied neighbors:

•  There will be 1 objective function
•  There will be 10 unknowns
•  There will be 3 constraints per neighbor (24 neighbor constraints)
•  There will be 2 global constraints (magnitude of grad and magnitude of

hessian)

20	

•  For 2nd order distributions, there are no conservation terms
•  For 3rd order distributions, after having determined the grad and hessian,

we scale the distribution to conserve. For example, the density of an
element times the material volume must equal the integral of the 3rd order
distribution over the donor material polygon:

•  Vxx = [(1/2) volume integral(dx dx) over material polygon]/mat volume
•  Vxy = [volume integral(dx dy) over material polygon]/mat volume
•  Vyy = [(1/2) volume integral(dy dy) over material polygon]/mat volume

•  This distribution is integrated over each intersection polygon:
•  Delta F = Fhome – (Fxx(Vxx) + Fxy(Vxy) + Fyy(Vyy))Volint +
 Fx volume integral(dx) + Fy volume integral(dy) +
 Fxx volume integral(dx dx/2) + Fxy volume integral (dx dy) +
 Fyy volume integral (dy dy/2)
•  Several quantities are usually remapped; hence, evaluation and storage of

intersection polygon integrals is economical

Conserva7on	
 terms	
 	

21	

Verifica7on	
 problem	
 	

•  Rider’s 2D distorting circle with a cosine shaped density distribution and a
prescribed velocity

•  The problem starts undeformed, it moves and distorts through 90 degrees
and then reverses to return to its initial configuration

•  Perfect solution would have no difference between starting and ending
density distribution

•  Show movies of 1st order, 2nd order, and 3rd order

22	

Verifica7on	
 problem	
 1st	
 order	
 144	
 elements	

23	

Verifica7on	
 problem	
 1st	
 order	
 144	
 elements	

Start time Reverse direction End time

24	

Verifica7on	
 problem	
 2nd	
 order	
 144	
 elements	

25	

Verifica7on	
 problem	
 2nd	
 order	
 144	
 elements	

Start time Reverse direction End time

26	

Verifica7on	
 problem	
 3rd	
 order	
 144	
 elements	

27	

Verifica7on	
 problem	
 3rd	
 order	
 144	
 elements	

Start time Reverse direction End time

28	

Conclusions	
 and	
 future	
 direc7ons	
 	

•  Demonstrated a variable (1st, 2nd, and 3rd order),
monotonic, conservative, multi-dimensional remapping
algorithm

•  Algorithm is still under development and testing
•  Compare multi-dimensional results with standard one-

dimensional interpolation for alternating direction, swept
volume remap

